
Published as a conference paper at ICLR 2022

ME-GCN: MULTI-DIMENSIONAL EDGE-EMBEDDED
GRAPH CONVOLUTIONAL NETWORKS FOR SEMI-
SUPERVISED TEXT CLASSIFICATION

Kunze Wang,1* Soyeon Caren Han,2*† Siqu Long 1 and Josiah Poon2

School of Computer Science
The University of Sydney
NSW, Australia
1{kwan4418, slon6753}@uni.sydney.edu.au
2{caren.han, josiah.poon}@sydney.edu.au

ABSTRACT

Compared to sequential learning models, graph-based neural networks exhibit
excellent ability in capturing global information and have been used for semi-
supervised learning tasks. Most Graph Convolutional Networks are designed with
the single-dimensional edge feature and failed to utilise the rich edge informa-
tion about graphs. This paper introduces the ME-GCN (Multi-dimensional Edge-
enhanced Graph Convolutional Networks) for semi-supervised text classification.
A text graph for an entire corpus is firstly constructed to describe the undirected
and multi-dimensional relationship of word-to-word, document-document, and
word-to-document. The graph is initialised with corpus-trained multi-dimensional
word and document node representation, and the relations are represented accord-
ing to the distance of those words/documents nodes. Then, the generated graph
is trained with ME-GCN, which considers the edge features as multi-stream sig-
nals, and each stream performs a separate graph convolutional operation. Our
ME-GCN can integrate a rich source of graph edge information of the entire text
corpus. The results have demonstrated that our proposed model has significantly
outperformed the state-of-the-art methods across eight benchmark datasets. The
code is available on: https://github.com/usydnlp/ME GCN

1 INTRODUCTION

Deep Learning models have performed well and have been widely used for text classification; how-
ever, the performance is not always satisfactory when utilising small labelled datasets. In many
practical scenarios, the labelled dataset is very scarce as human labelling is time-consuming and
may require domain knowledge. There is a pressing need for studying semi-supervised text clas-
sification with a relatively small number of labelled training data in deep learning paradigm. For
the successful semi-supervised text classification, it is crucial to maximize effective utilization of
structural and feature information of unlabelled data.

Graph Neural Networks have recently received lots of attention as it can analyse rich relational
structure, prioritize global features exploitation, and preserve global structure of a graph in embed-
dings. Due to these benefit, there have been successful attempts to revisit semi-supervised learning
with Graph Convolutional Networks (GCN) (Kipf & Welling, 2017). TextGCN (Yao et al., 2019)
initialises the whole text corpus as a document-word graph and applies GCN. It shows potential of
GCN-based semi-supervised text classification. Hu et al. (2019) worked on semi-supervised short
text classification using GCN with topic-entity, and Liu et al. (2020) proposed tensorGCN with se-
mantic, syntactic, and sequential information. One major problem in those existing GCN-based
text classification models is that edge features are restricted to be one-dimensional, which are the
indication about whether there is edge or not (e.g. binary connectedness) or often one-dimensional

* Equal contribution
† Corresponding author (Caren.Han@sydney.edu.au)

1

ar
X

iv
:2

20
4.

04
61

8v
1

 [
cs

.C
L

]
 1

0
A

pr
 2

02
2

https://github.com/usydnlp/ME_GCN
pengyang
删除线文本

Published as a conference paper at ICLR 2022

real-value representing similarities (e.g. pmi, tf-idf). Instead of being a binary indicator variable
or a single-dimensional value, edge features can possess rich information and fully incorporated by
using multi-dimensional vectors. Addressing this problem is likely to benefit several graph-based
classification problems but is particularly important for the text classification task. This is because
the relationship between words and documents can be better represented in a multi-dimensional vec-
tor space rather than a single value. For example, word-based vector space models embed the words
in a vector space where similarly defined words are mapped near to each other. Rather than using
the lexical-based syntactic parsers or additional resources, words that share semantic or syntactic
relationships will be represented by vectors of similar magnitude and be mapped in close proximity
to each other in the word embedding. Using this multi-dimensional word embedding as node and
edge features, it would be more effective to analyse rich relational information and explore global
structure of a graph. Then, what would be the best way to exploit edge features in a text graph
convolutional network? According to the recently reported articles (Gong & Cheng, 2019; Khan
& Blumenstock, 2019; Huang et al., 2020; Liu et al., 2020; Schlichtkrull et al., 2018), more rich
information should be considered in the relations in the graph neural networks.

In this paper, we propose a new multi-dimensional edge enhanced text graph convolutional networks
(ME-GCN), which is suitable for the semi-supervised text classification. Note that the focus of our
semi-supervised text classification task is on small proportion of labelled text documents with no
other resource, i.e. no pre-trained word embedding or language model, syntactic tagger or parser.
We construct a single large textual graph from an entire corpus, which contains words and documents
as nodes. The graph describes the undirected and multi-dimensional relationship of word-to-word,
document-document, and word-to-document. Each word and document are initialised with corpus-
trained multi-dimensional word and document embedding, and the relations are represented based on
the semantic distance of those representations. Then, the generated graph is trained with ME-GCN,
which considers edge features as multi-stream signals, and each stream performs a separate graph
convolutional operation. We conduct experiments on several semi-supervised text classification
datasets. Our model can achieve strong text classification performance with a small proportion of
labelled documents with no additional resources. The main contributions are:

• To the best of our knowledge, this is the first attempt to apply multi-dimensional edge
features on GNN for text classification.

• ME-GCN is proposed to use corpus-trained multi-dimensional word and document-based
edge features for the semi-supervised text classification.

• Experiments are conducted on several semi-supervised text classification datasets to illus-
trate the effectiveness of ME-GCN.

2 RELATED WORKS

Semi-supervised text classification: Due to the high cost of human labelling and the scarcity of
fully-labelled data, semi-supervised models have received attention in text classification. Latent vari-
able models (Chen et al., 2015) apply topic models by user-oriented seed information and infer the
documents’ labels based on category-topic assignment. The embedding-based model (Tang et al.,
2015; Meng et al., 2018) utilise seed information to derive text (word or document) embeddings
for documents and labels for text classification. Yang et al. (2017) leveraged sequence-to-sequence
Variational AutoEncoders (VAEs), and Miyato et al. (2017) utilized adversarial training to the text
domain by applying perturbations to the word embeddings. Graph convolutional networks (GCN)
have been popular in semi-supervised learning as it shows superior global structure understanding
ability (Kipf & Welling, 2017).

GNN for Text Classification: Graph Neural Networks have successfully used in various NLP tasks
(Bastings et al., 2017; Tu et al., 2019; Cao et al., 2019; Xu et al.). Yao et al. (2019) proposed the Text
Graph Convolutional Networks by applying a basic GCN (Kipf & Welling, 2017) to the text classifi-
cation task. In their work, a text graph for the whole corpus is constructed; word and document nodes
are initialised with one-hot representation and edge features are represented as one-dimensional real
values, such as PMI, TF-IDF. Several studies have attempted multiple different graph alignments
using knowledge graph or semantic/syntactic graph. Vashishth et al. (2019) applied GCN to incor-
porate syntactic/semantic information for word embedding training. Cao et al. (2019) proposed an
alignment-oriented knowledge graph embedding for entity alignment. TensorGCN (Liu et al., 2020)

2

pengyang
删除线文本

Published as a conference paper at ICLR 2022

proposed semantic, syntactic, and sequential contextual information. In their framework, multiple
aspect graphs are constructed from external resources, and those graph are jointly trained. There
are several Multi-aspect, Multi-dimension edge research have been published but none of them are
working on the Natural Language Processing field (Schlichtkrull et al., 2018; Khan & Blumenstock,
2019; Ma et al., 2020; He et al., 2020). Recently, graph attention mechanism has been applied in
text classification tasks (Mei et al., 2021; Liu et al., 2021; Yang et al., 2021a). Others focus on using
both local and global information (Jin et al., 2021), multi-modality with text and image information
(Yang et al., 2021b), enhancing TextGCN with other models (Ragesh et al., 2021) and combining
with external knowledge (Dai et al., 2022).

3 ME-GCN

We propose the Multi-dimensional Edge-enhanced Graph Convolutional Networks (ME-GCN) for
semi-supervised text classification. Note that all graph components are only based on the given text
corpus without using any external resources. We utilize the GCN as a base component, due to its
simplicity and effectiveness. We first give a brief overview of GCN and introduce details of how
to construct our corpus-based textual graph from a given text corpus. Finally, we present ME-GCN
learning model. Figure 1 shows the overall architecture of ME-GCN.

GCN Graph A GCN (Kipf & Welling, 2017) is a generalised version of the convolutional neural
networks for semi-supervised learning that operates directly on the graph-structured data and in-
duces embedding vectors of nodes based on properties of their neighbourhoods. Consider a graph
G = (V,E,A), where V (|V | = N) is the set of graph nodes, E is the set of graph edges, and
A ∈ RN×N is the graph adjacency matrix.

3.1 TEXTUAL GRAPH CONSTRUCTION

We first describe how to construct a textual graph that contains word/document node representation
and multi-dimensional edge features for a whole text corpus. We apply a straightforward textual
construction approach that treats words and documents as nodes in the graph. Unlike (Yao et al.,
2019), we have three types of edges, namely word-document edge, word-word edge, and document-
document edge with the aim to investigate all possible relations between nodes. Formally, we define
a ME-GCN graph GME = (V,E(t),ME(t)), where t denotes the tth dimensional edge, V (|V | =
N) is the set of graph nodes of word/document, E(t) are the set of graph edges, which can be one of
the three types, and ME(t) is the set of adjacency matrix at the tth dimension. The details of node
and edge features construction are presented as follows.

3.1.1 TEXTUAL NODE CONSTRUCTION

From an entire textual corpus, we construct word and document nodes in a graph so that the global
word and document distance can be explicitly modeled and graph convolution can be easily adapted.
ME-GCN considers the word and document nodes as components for preserving rich information
and representing the global structure of a whole corpus, which can fully support for the successful
semi-supervised text classification. With this in mind, ME-GCN trains word/node feature by using
a Word2Vec (Mikolov et al., 2013) for word nodes, and a Doc2Vec (Le & Mikolov, 2014) for doc-
ument nodes. For instance, Word2Vec takes as its input a whole corpus of words, and the trained
word vectors are positioned in a vector space such that words that share common contexts in the cor-
pus are located in close proximity to one another in the space. This is well-aligned with the role of
graph neural networks, representing the global structure of the corpus, and preserving rich semantic
information of the corpus. Most importantly, those word/document embeddings are distributed rep-
resentations of text in an T -dimensional space so the distance between words and documents can be
represented as a multi-dimensional vector. Formally, the word/document node features in ME-GCN
are initialised as follows. Note that the negative sampling is applied to reduce the training time.

Word Node Construction We train the Word2Vec CBOW (Mikolov et al., 2013) using context
words to predict the centre word. Assume we have a given text corpus consisting of K documents
and U unique words. The input is a set of context wordsXik in document k ∈ K encoded as one-hot
vector of size U . Then the hidden layer H and output layer Output are formulated in equation (1)
and (2), in which WU×T and W ′T×U are two projection matrix. After training, we extract the U

3

pengyang
高亮文本

pengyang
删除线文本

pengyang
高亮文本

Published as a conference paper at ICLR 2022

Figure 1: ME-GCN model architecture

vectors of dimension T from the updated matrix WU×T representing the corresponding U unique
words in the whole corpus.

H =

C∑
i=1

XikWU×T (1)

Output = HW ′T×U (2)

Document Node Construction Doc2Vec CBOW (Le & Mikolov, 2014) is essentially the same as
Word2Vec. In Doc2Vec, we feed the context words Xik together with the current document k to
the model, which is also encoded as one-hot vector based on the document id, and the vector size
becomes Û = U + K. We have the projection matrix WÛ×T containing U + K vectors. After
training, those K vectors in the updated WT×Û are used for representing the corresponding K
document.

H = DkWÛ×T
+

C∑
i=1

XikWÛ×T (3)

Output = HW ′
T×Û (4)

3.1.2 MULTI-DIMENSIONAL EDGE CONSTRUCTION

In this section, we describe how to construct a multi-dimensional edge feature in a graph. A tradi-
tional textual graph edge (Yao et al., 2019) was based on word occurrence in documents (document-
word edges), and word co-occurrence in the whole corpus (word-word edges), however, the occur-
rence information is not enough to extract how close two pieces of text are in both surface prox-
imity and meaning. According to Mikolov et al. (2013); Kusner et al. (2015), the distance between
word/document embeddings learn semantically meaningful representations for words from local co-
occurrences in sentences and each dimension of word2vec and doc2vec represents the same aspect
of word/document representations. Inspired by this, we utilise the distance between each dimension
of word/document embeddings to preserve the rich semantic information captured by edges, which
are also presented as multi-dimensional vectors. To represent all possible edge types, we propose
three types of edges: word-word edges, document-document edges, and word-document edges. Our
goal is to incorporate the semantic similarity between individual node pairs (each unique word and
document) into multi-dimensional edge features. One such measure for word/document node sim-
ilarity is provided by their Euclidean distance in the Word2Vec or Doc2Vec embedding space. We
separately use each dimension space in the node feature (Word2Vec/Dec2Vec) for representing each

4

pengyang
高亮文本

Published as a conference paper at ICLR 2022

of the dimension in the multi-dimensional node edge. Thus, we have T dimensional edges between
nodes of T dimensional features and each t ∈ {1, 2, ..., T} is represented by one dimensional Eu-
clidean distance calculation in the tth dimensional space. This edge calculation method is applied
to word-word and doc-doc edges.

Word-Word Edge Feature We draw on the learned semantics in each feature dimension of the
word embedding of size T to calculate the edge weight for each dimension. Concretely, the T -
dimensional word-word edge E(t)

wi,wj , t ∈ {1, 2, ..., T} between word i and word j is formulated as
in equation (5), in which W (t)

i and W (t)
j represents the feature value at the dimension t of the word

embedding Wi for word i and Wj for word j respectively. The denominator calculates the distance
of the two words regarding dimension t and tanh(−1) is used for normalization.

E(t)
wi,wj

= tanh
1

|W (t)
i −W

(t)
j |

(5)

Doc-Doc Edge Feature The document-document edge is constructed in a way similar to the word-
word edge. As is shown in equation (6), the T -dimensional document-document edge E(t)

di,dj
is

calculated based on the normalized Euclidean distance between the values D(t)
i and D(t)

j at each
dimension t of the features for document i and j. To relieve over-smoothing issue, we only consider
edges between two documents having over u overlapping words.

E
(t)
di,dj

= tanh
1

|D(t)
i −D

(t)
j |

if Wdi∩dj ≥ u (6)

Word-Doc Edge Feature We use the same calculation method for a single-dimension word-
document edge as in TextGCN while repeating it for each dimension t. Thus, the T -dimensional
word-document edge E(t)

wi,dj
is simply represented as the TF-IDF value of word i and document j.

This is repeated for each dimension t, as is formulated in equation (7). We also found using TF-IDF
weight is better than using term frequency only.

E
(t)
wi,dj

= TF-IDFwi,dj (7)

3.2 ME-GCN LEARNING

After constructing the multi-dimensional edge enhanced text graph, we focus on applying effective
learning framework to perform GCN on the textual graph with multi-dimensional edge features.

The traditional GCN learning takes into the initial input matrix H(0) ∈ RN×d0 containing N node
features of size d0. Then the propagation through layers is made based on the rule in equation (9),
which takes into consideration both node features and the graph structure in terms of connected
edges.

H(l+1) = f(H(l), A) = σ(ÂH(l)W (l)) (8)

The l and (l+1) represents the two subsequent layers, Â = D̃−
1
2 ÃD̃−

1
2 is the normalized symmetric

adjacency matrix Ã = A + I (I is an identity matrix for including self-connection), D̃ is the
diagonal node degree matrix with D̃(i, i) = ΣjÃ(i, j), and W (l) ∈ Rdl×dl+1 is a layer-specific
trainable weight matrix for lth layer. dl and dl+1 indicates the node feature dimension for lth layer
and (l + 1)th respectively. σ denotes a non-linear activation function for each layer such as Leaky
ReLu/ReLU except for the output layer where softmax is normally used for the classification.

Our goal is to represent the node representation by aggregating neighbour information with each
edge features in a multi-stream manner. Hence, we generalize the traditional GCN learning approach
to perform multi-stream(MS) learning for the multi-dimensional edge enhanced graph. The overall
MS learning procedure is in equation (10), for each node feature in H(l) ∈ RN×dl , we apply the
multi-stream GCN learning fMS that formulates t streams of traditional GCN learning in equation
(9) through the t dimensions of the connected edge, resulting in the multi-stream hidden feature
H

(l+1)
t ∈ RN×d(l+1)

ms at (l + 1)th layer. Here t ∈ {1, 2, ..., T} and d(l+1)
ms is the multi-stream feature

5

pengyang
删除线文本

pengyang
删除线文本

pengyang
打字机
8

Published as a conference paper at ICLR 2022

size for each edge dimension at this layer. Then a multi-stream aggregation function φMS is applied
over the t streams, producing the feature matrix H(l+1) ∈ RN×d(l+1) that contains the aggregated
feature for each node in N . Here we use concatenation function as φMS for the hidden layer
in the multi-stream aggregation, leading us to have dl+1 = t ∗ d(l+1)

ms . Specifically, for the output
layer, pooling method is used instead and the details are provided in later paragraph. Accordingly,
the updated propagation rule is provided in equation (11). Unlike the original GCN propagation in
equation (9), we have T streams of GCN learning in each layer, sharing the same input H(l) and
propagating based on the T adjacency matrices ME(t), which involves a set of layer and stream
specific trainable weight matrices denoted as W (l)(t). We also tried the shared-stream learning
that shares the trainable weight matrices across each stream but found that separate stream-specific
trainable weight matrices have better performance. The comparison of the two learning mechanisms
is provided in Appendix Section 5.5.

H(l) fMS−−−→ H
(l+1)
t

φMS−−−→ H(l+1) (9)

H(l+1) = φMS(fMS(H(l),ME(t))) (10)

= φMS(σ(M̂E
(t)
H(l)W (l)(t)))

Unlike the hidden layers where we use concatenation to aggregate the node features over each
stream to continue propagation to next layer, we instead apply the pooling at the output layer to
further synthesize the multi-stream features of each node to do the final classification. Equation
(12) formulizes max pooling, in which H(lO)

t ∈ RN×d
lO
ms , t ∈ {1, 2, ..., T} denotes the T streams

of node features for N nodes at the output layer lO, and here dlOms is the node feature dimension
that equals to the classification label number C. Through max pooling, we select the best valued
features over the T streams for each node in N before the final classification. We also tried other
pooling and provide the comparison in Appendix Section 5.5.

poolingmax = max
1≤t≤T

(H
(lO)
t) (11)

4 EVALUATION SETUP

We evaluate our ME-GCN on text classification in semi-supervised settings, and examine the effec-
tiveness of corpus-based multi-dimensional edge features.

Baselines: We compare ME-GCN with state-of-the-art semi-supervised text classification mod-
els, which do not use any external resources. Additionally, we also include four baseline models,
which use pretrained embedding or language model: CNN-Pretrained, LSTM-Pretrained, BERT,
and TMix. 1)TF-IDF+LR, 2)TF-IDF+SVM: Term frequency inverse document frequency for fea-
ture engineering with Logistic Regression or SVM with rbf kernel. 3)CNN-Rand, 4)-Pretrained:
Text-CNN (Kim, 2014) is used as the classifier. Both CNN-Rand using random initialized word
embedding and CNN-Pretrained using pretrained word embedding are evaluated. We used English
Glove-pretrained (Pennington et al., 2014) and Chinese Word Vectors (Li et al., 2018) for Chinese
dataset-zh. 5)LSTM-Rand, 6)-Pretrained: We apply the same set-up as the CNN, but with Long
Short-Term Memory (LSTM). 7)TextGCN: We follow the same hyperparameters of the TextGCN
(Yao et al., 2019). 8)BERT: We use huggingface(Wolf et al., 2020) BERTBASE (Devlin et al., 2019)
in our experiments (‘bert-base-chinese’ model is used for Chinese). 9)TMix: TMix(Chen et al.,
2020) generates new training text data by interpolating over labelled text encoded using BERT hid-
den representation and train on the generated text data for text classification. We use the default
setting provided.

Dataset: We evaluated our experiments on five widely used text classification benchmark datasets
(Yao et al., 2019), 20NG, R8, R52, MR and Ohsumed, and three additional semi-supervised text
classification datasets (Hu et al., 2019), Agnews, Twitter nltk and Waimai. All the data is split based
on the extreme low resource text classification enviornment- 1% training and 99% test set. The
summary statistics of the datasets can be found in Appendix Table 5. For the data sample selection,
we randomly select them but the class distribution is followed by the original datasets. 1)20NG is
a 20-class news classification dataset and we select 3,000 samples from the original dataset. 2)R8,

6

Published as a conference paper at ICLR 2022

Methods Pretrained 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
TFIDF + SVM 7 0.2529 0.7246 0.5932 0.1589 0.5884 0.4241 0.5737 0.7521
TFIDF + LR 7 0.2633 0.7249 0.6332 0.1798 0.5871 0.5370 0.5791 0.7381
CNN - Rand 7 0.0768 0.7219 0.6325 0.1889 0.5641 0.3825 0.5822 0.7784
CNN - Pretrained 3 0.2380 0.7428 0.6896 0.2458 0.6005 0.6636 0.6088 0.7926
LSTM - Rand 7 0.0545 0.6788 0.4253 0.1319 0.5442 0.3444 0.5458 0.6458
LSTM - Pretrained 3 0.0593 0.6919 0.5285 0.0948 0.5933 0.5815 0.6098 0.6663
TextGCN 7 0.1188 0.8628 0.4847 0.1612 0.6222 0.7420 0.7806 0.8065
BERT 3 0.1347 0.5148 0.6291 0.1464 0.7666 0.7261 0.7024 0.8248
TMix 3 0.2286 0.7322 0.6195 0.1721 0.6267 0.8025 0.6111 0.6376
Our ME-GCN 7 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 1: Test accuracy comparison. The bottom row shows the best test accuracy from our proposed
model using either max pooling or average pooling. The comparison of our model performance for
each dataset using the three pooling methods is provided in Table 3. The second best is underlined.

(a) R8 (b) R52 (c) MR (d) Waimai(zh)

Figure 2: Test accuracy by varying edge feature dimensions. The bottom right corner shows the
average number of words per document in each corpus.

3)R52 are from Reuters which is a topic classification dataset with 8 classes and 52 classes. 3,000
samples from each dataset are selected. 4)MR(Pang & Lee, 2005) is a binary classification dataset
about movie comments and we use all samples from the dataset. 5)Ohsumed is a medical dataset
with 23 classes, and we select 3,000 samples from the original dataset. 6)Agnews(Zhang et al.,
2015) is a 4-class news classification dataset and 6,000 samples are selected. 7)Twitter nltk is
a binary classification sentiment analysis from Twitter, we sampled 1,500 positive and 1,500 test
samples from the original dataset. 8)Waimai is a binary sentiment analysis dataset about food
delivery service comments from a Chinese online food ordering platform. The dataset is in Chinese
and pre-tokenized.

5 RESULTS ANALYSIS

5.1 PERFORMANCE EVALUATION

Table 1 presents a comprehensive performance experiment, conducted on the benchmark datasets.
The most bottom row shows the accuracy from our best models using either max or average pooling.

Overall, our proposed model significantly outperforms the baseline models on all eight datasets,
demonstrating the effectiveness of our ME-GCN on semi-supervised text classification for various
length of text. With in-depth analysis, CNN/LSTM-Rand is quite low in performance on several
datasets but increases significantly when using pretrained embeddings. While TextGCN achieves
better accuracy than above baselines on most datasets, the performance is all lower than ME-GCN.
This shows the efficiency of preserving rich information using multi-dimensional edge features. The
merit of pre-training stands out with BERT and TMix, producing better accuracy than the baseline
TextGCN on most datasets. Especially, BERT achieves the best and second best performance on
MR and Waimai, which are short-text sentiment analysis datasets. This would be because of the
two aspects of sentiment classification: (1) compared to topic-specific text classification, sentiment
analysis task may benefit from the pretrained general semantics learned from a large external text;
(2) word order matters for sentiment analysis, which could be missing in GNNs. Nevertheless, our
ME-GCN, with no external resources, still outperforms those pertrained models in seven datasets,
illustrating the potential superiority of self-exploration on the corpus via multi-dimensional edge
graph in comparison of pretraining on large external resource.

7

Published as a conference paper at ICLR 2022

(a) Dim = 5, second layer (b) Dim = 25, second layer (c) R52 (d) Twitter nltk

Figure 3: (a)(b)t-SNE visualisation of test set document embeddings in AgNews (4 classes). The (a)
and (b) show second layer document embeddings learned by 5 and 25 dimensional node and edge
features respectively.(c)(d)Test accuracy comparison with different number of labelled documents.

Word Embedding 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Word2Vec 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

fastText 0.2510 0.8394 0.7783 0.2550 0.6727 0.7812 0.8333 0.8191
GloVe 0.2526 0.8247 0.7835 0.2832 0.6895 0.7628 0.8341 0.8298

Table 2: Test accuracy comparison of our ME-GCN model with different word embedding tech-
niques to train word node embeddings and word-word multi-dimensional edge features.

5.2 IMPACT OF EDGE FEATURE DIMENSION

To evaluate the effect of the dimension size of the edge features, we tested ME-GCN with different
dimensions. Figure 2 shows the test accuracy of our ME-GCN model on the four dataset, including
R8, R52, MR, Waimai(zh). The bottom right corner for each subgraph includes the average number
of the words per document. We noted that the test accuracy is related to the average number of
words per document in the corpus. For instance, for ‘MR’ (avg #: 18.4), test accuracy first increases
with the increase of the size of edge feature dimensions, reaching the highest value at 10; it falls
when its dimension is higher than 15. However, for R8 and R52 (avg #: 84.2 and 104.5), got the
highest value at 20 or 25. This is consistent with the intuition that the average number of words per
document in the corpus should align with the dimension size of the edge features in ME-GCN. The
trend is different in waimai dataset as it is Chinese, this is because different languages would have
different nature of choosing the efficient edge feature dimension.

Moreover, in order to analyse the impact of the edge feature dimension, we present an illustrative
visualisation of the document embeddings learned by ME-GCN. We use the t-SNE tool (Van der
Maaten & Hinton, 2008) in order to visualise the learned document embeddings. Figure 3a and
Figure 3b shows the visualisation of test set document embeddings in AgNews learned by ME-GCN
(second layer) 5 and 25 dimensional node and edge features. The AgNews has 4 classes and the
average number of words per document is 35.2. Instead of dim=5, having dim=25 as edge features
would better to separate them into four classes.

5.3 IMPACT OF RATIO OF LABELLED DOCS

We choose 3 representative methods with the best performance from Table 1: CNN-Pretrained,
TextGCN and our ME-GCN, in order to study the impact of the number of labelled documents.
Particularly, we vary the ratio of labelled documents and compare their performance on the two
datasets, Twitter nltk and R52, that have the smallest number and largest number of classes. Figure
3c and Figure 3d reports test accuracies with 1%, 10%, and 33% of the R52 and Twitter nltk training
set. We note that our ME-GCN outperforms all other methods consistently. For instance, ME-
GCN achieves a test accuracy of 0.8232 on Twitter nltk with only 1% training documents and a test
accuracy of 0.8552 on R52 with only 10% training documents which are higher than other models
with even the 33% training documents. It demonstrates that our method can more effectively take
advantage of the limited labelled data for text classification.

8

Published as a conference paper at ICLR 2022

Pooling Method 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Max Pooling 0.2775 0.8473 0.7828 0.2475 0.6811 0.8043 0.8232 0.8393
Avg Pooling 0.2861 0.8679 0.7675 0.2740 0.6658 0.7911 0.8205 0.8303
Min Pooling 0.0424 0.2987 0.2550 0.0294 0.5000 0.2005 0.5000 0.6663

Table 3: Test accuracy of ME-GCN with three different pooling methods, max, average, and min
pooling

Learning Methods 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Separated Learning 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Shared Learning 0.1582 0.8016 0.6554 0.2635 0.6575 0.6993 0.7037 0.8137
Table 4: Test accuracy of ME-GCN with two multi-stream learning methods, shared and separated
learners.

5.4 COMPARISON OF EMBEDDING VARIANTS

ME-GCN apply a Word2Vec CBOW in order to train the word node embedding and the related
multi-dimensional edge feature. We compare our model with three different word embedding tech-
niques, Word2Vec, fastText, and Glove in Table 2. We noted that using Word2Vec and Glove,
word-based models, is comparatively higher than applying the fastText, a character n-gram-based
model. This would be affected because the node and edge of ME-GCN are based on words, not
characters.

5.5 LEARNING AND POOLING VARIANT TESTING

We compare ME-GCN with three different pooling approaches (max, average, and min pooling) and
the result is shown in Table 3. Most datasets produce better results when using max pooling, and
the result with max and average pooling outperforms that with min pooling. This is very obvious
because the min pooling captures the minimum value of each graph component.

We also compare two multi-stream graph learning methods, including separated and shared stream
learning to examine the effectiveness of ME-GCN learning with multi-dimensional edge features.
Table 4 presents that the separated stream learners significantly outperforms the shared learners.
This shows it is much efficient to learn each dimensional stream with an individual learning unit and
initially understand the local structure, instead of learning all global structures at once.

6 CONCLUSION

We introduced ME-GCN (Multi-dimensional Edge-enhanced Graph Convolutional Networks) for
semi-supervised text classification, which takes full advantage of both limited labelled and large
unlabelled data by rich node and edge information propagation. We propose corpus-trained multi-
dimensional edge features to efficiently handle the distance/closeness between words and documents
as multi-dimensional edge features, and all graph components are based on the given text corpus
only. ME-GCN demonstrates promising results by outperforming numerous state-of-the-arts on
eight semi-supervised text classification datasets consistently. In the future, it would be interesting
to make this multi-aspect graph under inductive learning.

REFERENCES

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. Graph con-
volutional encoders for syntax-aware neural machine translation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pp. 1957–1967, 2017.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing
text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and Tat-Seng Chua. Multi-channel graph neural
network for entity alignment. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 1452–1461, 2019.

9

Published as a conference paper at ICLR 2022

Jiaao Chen, Zichao Yang, and Diyi Yang. Mixtext: Linguistically-informed interpolation of hidden
space for semi-supervised text classification. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 2147–2157, 2020.

Xingyuan Chen, Yunqing Xia, Peng Jin, and John Carroll. Dataless text classification with descrip-
tive lda. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Yong Dai, Linjun Shou, Ming Gong, Xiaolin Xia, Zhao Kang, Zenglin Xu, and Daxin Jiang. Graph
fusion network for text classification. Knowledge-Based Systems, 236:107659, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9211–9219, 2019.

Xin He, Qiong Liu, and You Yang. Mv-gnn: Multi-view graph neural network for compression
artifacts reduction. IEEE Transactions on Image Processing, 29:6829–6840, 2020.

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. Heterogeneous graph attention
networks for semi-supervised short text classification. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 4823–4832, 2019.

Zhichao Huang, Xutao Li, Yunming Ye, and Michael K. Ng. Mr-gcn: Multi-relational graph convo-
lutional networks based on generalized tensor product. In Christian Bessiere (ed.), Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 1258–
1264. International Joint Conferences on Artificial Intelligence Organization, 7 2020. Main track.

Di Jin, Xiangchen Song, Zhizhi Yu, Ziyang Liu, Heling Zhang, Zhaomeng Cheng, and Jiawei Han.
Bite-gcn: A new gcn architecture via bidirectional convolution of topology and features on text-
rich networks. In Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, pp. 157–165, 2021.

Muhammad Raza Khan and Joshua E Blumenstock. Multi-gcn: Graph convolutional networks for
multi-view networks, with applications to global poverty. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 606–613, 2019.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, pp. 1746–
1751, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
distances. In International conference on machine learning, pp. 957–966. PMLR, 2015.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Interna-
tional conference on machine learning, pp. 1188–1196. PMLR, 2014.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and Xiaoyong Du. Analogical reasoning on
chinese morphological and semantic relations. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 138–143, 2018.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv. Tensor graph convolutional networks for
text classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 8409–8416, 2020.

10

Published as a conference paper at ICLR 2022

Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue Feng. Deep attention
diffusion graph neural networks for text classification. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 8142–8152, 2021.

Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie, Geyan Ye, and
Junzhou Huang. Multi-view graph neural networks for molecular property prediction. arXiv
preprint arXiv:2005.13607, 2020.

Xin Mei, Xiaoyan Cai, Libin Yang, and Nanxin Wang. Graph transformer networks based text
representation. Neurocomputing, 463:91–100, 2021.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. Weakly-supervised neural text classifica-
tion. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, pp. 983–992, 2018.

Tomas Mikolov, Kai Chen, G. S. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. In International Conference on Learning Representations, 2013.

Takeru Miyato, Andrew M. Dai, and Ian Goodfellow. Adversarial training methods for semi-
supervised text classification. International Conference on Learning Representations, 2017.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pp. 115–124, 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-h
igh-performance-deep-learning-library.pdf.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer, Ramakrishna Bairi, and Vijay Lingam.
Hetegcn: Heterogeneous graph convolutional networks for text classification. In Proceedings of
the 14th ACM International Conference on Web Search and Data Mining, pp. 860–868, 2021.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1165–1174, 2015.

Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, and Bowen Zhou. Multi-hop
reading comprehension across multiple documents by reasoning over heterogeneous graphs. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
2704–2713, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, and
Partha Talukdar. Incorporating syntactic and semantic information in word embeddings using
graph convolutional networks. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 3308–3318, 2019.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Published as a conference paper at ICLR 2022

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Nuo Xu, Pinghui Wang, Long Chen, Jing Tao, and Junzhou Zhao. Mr-gnn: Multi-resolution and
dual graph neural network for predicting structured entity interactions.

Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli Li, and Liqiang Nie. Hgat: Heterogeneous
graph attention networks for semi-supervised short text classification. ACM Transactions on In-
formation Systems, 39(3), May 2021a. doi: 10.1145/3450352.

Xiaocui Yang, Shi Feng, Yifei Zhang, and Daling Wang. Multimodal sentiment detection based
on multi-channel graph neural networks. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 328–339, 2021b.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved varia-
tional autoencoders for text modeling using dilated convolutions. In International conference on
machine learning, pp. 3881–3890. PMLR, 2017.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7370–7377,
2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classi-
fication. In Proceedings of the 28th International Conference on Neural Information Processing
Systems-Volume 1, pp. 649–657, 2015.

A SETTINGS

A.1 HYPERPARAMETER SETTING

All documents are tokenized using NLTK tokenizer(Bird et al., 2009), and words occurring no more
than 5 times have been excluded. Both word2vec and Dec2vec are trained on the corpus we get using
gensim package with window size = 5 and iter = 200. The initial feature dimension for node
and document is set to d0 = 25, which is same to the multi-dimension number for edge features
and multi-stream number T in ME-GCN learning. Different multi-stream numbers are tested and
discussed in Section 5.2. The threshold u = 5 is used for document-document edge construction.
We use two-layers of multi-stream GCN learning with dl1ms = 25 (thus dl1 = 625) for the first multi-
stream GCN layer and dlOms = C(no. of label in the datasets) for the output layer. In the training
process, following Liu et al. (2020), we use dropout rate as 0.5 and learning rate as 0.002 with Adam
optimizer. The number of epochs is 2000 and 10% of the training set is used as the validation set for
early stopping when there is no decreasing in validation set’s loss for 100 consecutive epochs.

Datasets # Doc # Words # Node # Class Avg. length
20NG 3,000 6,095 9,095 20 249.4

R8 3,000 4,353 7,353 8 84.2
R52 3,000 4,619 7,619 52 104.5

Ohsumed 3,000 8,659 11,659 23 132.6
MR 10,662 4,501 15,163 2 18.4

Agnews 6,000 5,360 11,360 4 35.2
Twit nltk 3,000 634 3,634 2 11.5

Waimai(zh) 11,987 10,979 22,966 2 15.5
Table 5: The summary statistics of datasets

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6

Published as a conference paper at ICLR 2022

A.2 HYPERPAREMETER SEARCH

For each dataset we use grid search to find the best set of hyperparameters and select the base
model based on the average accuracy by running each model for 5 times. The number of stream:
5,10,20,25,30,40,50. The document edge threshold: 3,5,10,15. The pooling method: max pooling,
min pooling, average pooling. The number of hyperparameter search trials is 72(= 6 ∗ 4 ∗ 3) for
each dataset. The best hyperparameters for each dataset and their average accuracy on test set shows
in Table 6. And the trend of validation performance is very similar to the testing performance trend.

20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Stream 30 20 25 30 10 20 25 30

Document Threshold 15 10 15 5 5 5 3 3
Pooling Method avg avg max avg max avg max max

Accuracy 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 6: Best hyperparameters for each dataset

A.3 RUNNING DETAILS

All the models are trained by using 16 Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz and NVIDIA
Titan RTX 24GB using Pytorch (Paszke et al., 2019).

The number of parameters for each part of the model is: Word Node (Word2vec): 2UT , Document
Node (Doc2vec): 2T (U +K), ME-GCN Learning: T 2dl1ms(1 +C). The default value of dl1ms is 25.
The number of parameters of TextGCN is (U +K) ∗D +D ∗C and the default value of D is 200.
Comparison of the number of parameters between TextGCN and our ME-GCN shows in Figure 4.

Figure 4: Number of Parameters Comparison

B LINKS RELATED TO DATASETS AND BASELINE MODELS

The links for Datasets:

• 20NG: http://qwone.com/∼jason/20Newsgroups/

• R8, R52: https://www.cs.umb.edu/∼smimarog/textmining/datasets/

• MR: http://www.cs.cornell.edu/people/pabo/movie-review-data/

• Ohsumed: http://disi.unitn.it/moschitti/corpora.htm

• Agnews: http://www.di.unipi.it/∼gulli/AG corpus of news articles

• Twitter nltk: http://nltk.org/howto/twitter.html

13

http://qwone.com/~jason/20Newsgroups/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://disi.unitn.it/moschitti/corpora.htm
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles
http://nltk.org/howto/twitter.html

Published as a conference paper at ICLR 2022

• Waimai: https://github.com/SophonPlus/ChineseNlpCorpus/

The links for Baseline Models:

• TextCNN: https://github.com/DongjunLee/text-cnn-tensorflow
• TextGCN: https://github.com/yao8839836/text gcn
• BERT BASE: https://huggingface.co/bert-base-uncased
• Tmix: https://github.com/GT-SALT/MixText
• Chinese BERT: https://huggingface.co/bert-base-chinese
• GloVe-pretrained: https://nlp.stanford.edu/projects/glove/
• Chinese Word Vectors: https://github.com/Embedding/Chinese-Word-Vectors

The tokenizer used:

• English Tokenizer - NLTK: https://www.nltk.org/api/nltk.tokenize.html
• Chinese Tokenizer - Jieba: https://github.com/fxsjy/jieba

14

https://github.com/SophonPlus/ChineseNlpCorpus/
https://github.com/DongjunLee/text-cnn-tensorflow
https://github.com/yao8839836/text_gcn
https://huggingface.co/bert-base-uncased
https://github.com/GT-SALT/MixText
https://huggingface.co/bert-base-chinese
https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors
https://www.nltk.org/api/nltk.tokenize.html
https://github.com/fxsjy/jieba

	1 Introduction
	2 Related Works
	3 ME-GCN
	3.1 Textual Graph Construction
	3.1.1 Textual Node Construction
	3.1.2 Multi-dimensional Edge Construction

	3.2 ME-GCN Learning

	4 Evaluation Setup
	5 Results Analysis
	5.1 Performance Evaluation
	5.2 Impact of Edge Feature Dimension
	5.3 Impact of Ratio of Labelled Docs
	5.4 Comparison of Embedding Variants
	5.5 Learning and Pooling Variant Testing

	6 Conclusion
	A Settings
	A.1 Hyperparameter Setting
	A.2 Hyperparemeter Search
	A.3 Running Details

	B Links Related to Datasets and Baseline Models

